Amalgamated Worksheet \# 4

Various Artists

April 30, 2013

1 Peyam Tabrizian

Problem 1:

Suppose V is a vector space over \mathbb{C} and $T \in \mathcal{L}(V)$ is normal. Show that if every eigenvalue of T is real, then T is self-adjoint.

Solution: By the complex spectral theorem, there exists an orthonormal basis $\mathcal{B}=\left(v_{1}, \cdots, v_{n}\right)$ of V consisting of eigenvectors of T.

Let v be an arbitrary vector in V.
By the above, we know that $v=a_{1} v_{1}+\cdots+a_{n} v_{n}$ for scalars a_{1}, \cdots, a_{n}, where $T\left(v_{i}\right)=\lambda_{i} v_{i}$ for real eigenvalues $\lambda_{i}(i=1, \cdots, n)$

In particular, since T^{*} is normal ${ }^{1}$
But then:

$$
\begin{aligned}
T^{*}(v) & =T^{*}\left(a_{1} v_{1}+\cdots+a_{n} v_{n}\right) \\
& =a_{1} T^{*}\left(v_{1}\right)+\cdots+a_{n} T^{*}\left(v_{n}\right) \\
& =a_{1} \overline{\lambda_{1}} v_{1}+\cdots+a_{n} \overline{\lambda_{n}} v_{n} \\
& =a_{1} \lambda_{1} v_{1}+\cdots+a_{n} \lambda_{n} v_{n} \quad \text { because each } \lambda_{i} \text { is real } \\
& =a_{1} T\left(v_{1}\right)+\cdots+a_{n} T\left(v_{n}\right) \\
& =T\left(a_{1} v_{1}+\cdots+a_{n} v_{n}\right) \\
& =T(v)
\end{aligned}
$$

[^0]So $T^{*}(v)=T(v)$ for all v, so $T=T^{*}$

Problem 2:

Suppose A is a symmetric matrix over \mathbb{R}. Show that if $|\lambda|=1$ for every eigenvalue λ of A, then $A^{2}=I$.

First of all, $A^{*}=A^{T}$ (because A has only real entries) $=A$ (because A is symmetric), so $A^{*}=A$, so A is self-adjoint.

Hence, by the real spectral theorem (which holds for matrices as well), there exists an orthonormal basis $\left(v_{1}, \cdots, v_{n}\right)$ of \mathbb{R}^{n} consisting of eigenvectors of A. In particular, $A v_{i}=\lambda_{i} v_{i}$ for real eigenvalues $\lambda_{i}(i=1, \cdots, n)$

Now let x, y be arbitrary vectors in \mathbb{R}^{n}.
Then $x=a_{1} v_{1}+\cdots+a_{n} v_{n}$ and $y=b_{1} v_{1}+\cdots+b_{n} v_{n}$ for scalars $a_{1}, \cdots, a_{n}, b_{1}, \cdots, b_{n}$.
Goal: We want to show $<A^{2} x, y>=<x, y>$
Now consider:

$$
\begin{array}{rlrl}
<A^{2} x, y>= & <A(A x), y> \\
= & <A x, A^{*} y> \\
= & <A x, A y>\quad \text { because } A^{*}=A \\
= & <A\left(a_{1} v_{1}+\cdots+a_{n} v_{n}\right), A\left(b_{1} v_{1}+\cdots+b_{n} v_{n}\right)> \\
= & <a_{1} A\left(v_{1}\right)+\cdots+a_{n} A\left(v_{n}\right), b_{1} A\left(v_{1}\right)+\cdots+b_{n} A\left(v_{n}\right)> \\
= & <a_{1} \lambda_{1} v_{1}+\cdots+a_{n} \lambda_{n} v_{n}, b_{1} \lambda_{1} v_{1}+\cdots+b_{n} \lambda_{n} v_{n}> \\
& <a_{1} \lambda_{1} v_{1}, b_{1} \lambda_{1} v_{1}>+ & \cdots & +<a_{1} \lambda_{1} v_{1}, b_{n} \lambda_{n} v_{n}> \\
= & \vdots & <a_{i} \lambda_{i} v_{i}, b_{j} \lambda_{j} v_{j}> & \vdots \\
& <a_{n} \lambda_{n} v_{n}, b_{1} \lambda_{1} v_{1}>+ & \cdots & +<a_{n} \lambda_{n} v_{n}, b_{n} \lambda_{n} v_{n}> \\
= & \sum_{i, j=1}^{n}<a_{i} \lambda_{i} v_{i}, b_{j} \lambda_{j} v_{j}> &
\end{array}
$$

(In the middle step, we used distributivity/foil)

But because b_{j} and λ_{j} are real:

$$
<a_{i} \lambda_{i} v_{i}, b_{j} \lambda_{j} v_{j}>=a_{i} \lambda_{i} \overline{b_{j} \lambda_{j}}<v_{i}, v_{j}>=a_{i} \lambda_{i} b_{j} \lambda_{j}<v_{i}, v_{j}>
$$

Now if $i \neq j,<v_{i}, v_{j}>=0$ (by orthogonality), hence $<a_{i} \lambda_{i} v_{i}, b_{j} \lambda_{j} v_{j}>=0$

And if $\left.i=j,<v_{i}, v_{j}\right\rangle=1$ (by orthonormality), so:

$$
<a_{i} \lambda_{i} v_{i}, b_{j} \lambda_{j} v_{j}>=a_{i} \lambda_{i} b_{i} \lambda_{i}(1)=a_{i} b_{i}\left(\lambda_{i}\right)^{2}=a_{i} b_{i}
$$

(where we used $\left(\lambda_{i}\right)^{2}=\left(\left|\lambda_{i}\right|\right)^{2}=1^{2}=1$, because λ_{i} is real)
Therefore, the above sum simplifies to:

$$
<A^{2} x, y>=\sum_{i=1}^{n} a_{i} b_{i}=a_{1} b_{1}+\cdots+a_{n} b_{n}
$$

Similarly, we have:

$$
\begin{array}{rlr}
<x, y>= & <a_{1} v_{1}+\cdots+a_{n} v_{n}, b_{1} v_{1}+\cdots+b_{n} v_{n}> \\
& <a_{1} v_{1}, b_{1} v_{1}>+ & \cdots \\
\vdots & +<a_{1} v_{1}, b_{n} v_{n}> \\
& <a_{n} v_{n}, b_{1} v_{1}>+ & <a_{i} v_{i}, b_{j} v_{j}> \\
= & \vdots & \\
= & \\
i, j=a_{n} v_{n}, b_{n} v_{n}> \\
= & \sum_{i, j=1}^{n} a_{i} v_{i}, b_{j} v_{j}> & \\
= & \sum_{i=1}^{n} a_{i} b_{i}, v_{j}> \\
= & a_{1} b_{1}+\cdots+a_{n} b_{n}
\end{array}
$$

Therefore:

$$
<A^{2} x, y>=a_{1} b_{1}+\cdots+a_{n} b_{n}=<x, y>
$$

Hence $<A^{2} x, y>=<x, y>$ for all x, y.
Hence $<A^{2} x-x, y>=0$ for all y

Hence $A^{2} x-x=0$ for all x, so $A^{2} x=x$ for all x
Hence $A^{2}=I$

Problem 3:

(if time permits) If $U=\mathcal{P}_{2}(\mathbb{R})$, what is its complexification $U_{\mathbb{C}}$? Suppose $S \in \mathcal{L}(U)$ is defined by $S(p)=p^{\prime}$, what is its complexification $S_{\mathbb{C}}$?

$$
U_{\mathbb{C}}=U \times U=\left(\mathcal{P}_{2}(\mathbb{R})\right) \times\left(\mathcal{P}_{2}(\mathbb{R})\right)
$$

Where we identify (p, q) with $p+i q$.
Moreover, addition in $U_{\mathbb{C}}$ is given by:

$$
(p+i q)+(r+i s)=(p+r)+i(q+s)
$$

And scalar multiplication in $U_{\mathbb{C}}$ is given by:

$$
(a+i b)(p+i q)=(a p-b q)+i(a q+b p)
$$

(where $a, b \in \mathbb{R}$)
More precisely, a typical element of $U_{\mathbb{C}}$ is of the form:
$a+b x+c x^{2}+i\left(d+e x+f x^{2}\right)=(a+i d)+(b+i e) x+(c+i f) x^{2}=c_{1}+c_{2} x+c_{3} x^{2}$
where $c_{1}=a+i d, c_{2}=b+i e, c_{3}=c+i f$ are complex numbers
Conversely, if c_{1}, c_{2}, c_{3} are arbitrary complex numbers, you can write $c_{1}+c_{2} x+c_{3} x^{2}$ in the form $a+b x+c x^{2}+i\left(d+e x+f x^{2}\right)$, where $a=\operatorname{Re}\left(c_{1}\right), b=\operatorname{Re}\left(c_{2}\right), c=\operatorname{Re}\left(c_{3}\right)$, $d=\operatorname{Im}\left(c_{1}\right), e=\operatorname{Im}\left(c_{2}\right), f=\operatorname{Im}\left(c_{3}\right)$.

It follows that $U_{\mathbb{C}}$ is in fact equal to the set of all polynomials in x of degree 2 or less with coefficients in \mathbb{C}^{2}

Finally:

[^1]\[

$$
\begin{aligned}
S_{\mathbb{C}}(p+i q) & =S_{\mathbb{C}}\left(a+b x+c x^{2}+i\left(d+e x+f x^{2}\right)\right. \\
& =S\left(a+b x+c x^{2}\right)+i S\left(d+e x+f x^{2}\right) \\
& =b+2 c x+i(e+2 f x) \\
& =(b+i e)+2(c+i f) x \\
& =p^{\prime}+i q^{\prime} \\
& =(p+i q)^{\prime}
\end{aligned}
$$
\]

That is, $S_{\mathbb{C}}(p)$ is still equal to p^{\prime}, except that now we're considering polynomials with coefficients in \mathbb{C} instead of \mathbb{R}.

Problem 4:

Briefly explain how to prove the real spectral theorem from the complex spectral theorem

Step 1: Complexify U and S to get $U_{\mathbb{C}}$ (which is a vector space over \mathbb{C}) and $S_{\mathbb{C}}$ (as in problem 3)

One can show that $S_{\mathbb{C}}$ is self-adjoint (and hence all its eigevalues are real).
Step 2: Apply the complex spectral theorem (which applies here) to $U_{\mathbb{C}}$ and $S_{\mathbb{C}}$ to $\overline{\text { obtain }}$ an orthonormal basis $\left(w_{1}, \cdots, w_{n}\right)=\left(u_{1}+i v_{1}, \cdots, u_{n}+i v_{n}\right)$ of $U_{\mathbb{C}}$ consisting of eigenvectors of $S_{\mathbb{C}}$

Step 3: One can show that in fact $u_{1}, \cdots, u_{n}, v_{1}, \cdots, v_{n}$ are eigenvectors of S, and in fact:

$$
\operatorname{Span}\left(u_{1}, \cdots, u_{n}, v_{1}, \cdots, v_{n}\right)=U
$$

In particular, this implies that the span of all the eigenvectors of S is $U(\star)$
Now for each eigenvalue λ, find a basis for $\operatorname{Nul}(S-\lambda I)$ and apply Gram-Schmidt to get an orthonormal basis for $N u l(S-\lambda I)$. Put all your basis vectors together to get a set \mathcal{B}

1) \mathcal{B} is linearly independent because eigenvectors of S corresponding to distinct eigenvalues are linearly independent, and by construction
2) \mathcal{B} spans U by (\star)
3) \mathcal{B} is orthonormal because S is normal, and hence eigenvectors corresponding to distinct eigenvalues of S are orthonormal ${ }^{3}$

Hence \mathcal{B} is an orthonormal basis of U consisting of eigenvectors of S

2 Daniel Sparks

1. Prove some of the properties of adjoints listed on p.119; S, T are operators on a finite dimensional complex vector space V.
(a) $(S+T)^{*}=S^{*}+T^{*}$
(b) $(a T)^{*}=\bar{a} T^{*}$
(c) $\left(T^{*}\right)^{*}=T$

Axler suggests thinking about $T \mapsto T^{*}$ as a function $*: \mathcal{L}(V) \rightarrow \mathcal{L}(V)$.
(f) Look up the definition of a \mathbf{C}^{*}-algebra.
(g) Show that $*$ is an isomorphism of \mathbf{R} vector spaces.

Solution: (a) $\langle(S+T) v, w\rangle=\langle S v, w\rangle+\langle T v, w\rangle=\left\langle v, S^{*} w\right\rangle+\left\langle v, T^{*} w\right\rangle=$ $\left\langle v,\left(S^{*}+T^{*}\right) w\right\rangle$ for all $v, w \in V$. Hence $(S+T)^{*}(w)=\left(S^{*}+T^{*}\right)(w)$ for all $w \in V$.
(b) $\langle(a T) v, w\rangle=\langle a(T v), w\rangle=a\langle T v, w\rangle=a\left\langle v, T^{*} w\right\rangle=\left\langle v, \bar{a} T^{*} w\right\rangle=\left\langle v,\left(\bar{a} T^{*}\right) w\right\rangle$ for all v, w. Hence $(a T)^{*}(w)=\left(\bar{a} T^{*}\right)(w)$ for all w.
(c) $\left\langle T^{*} v, w\right\rangle=\overline{\left\langle w, T^{*} v\right\rangle}=\overline{\langle T w, v\rangle}=\langle v, T w\rangle$ for all v, w. Hence $\left(T^{*}\right)^{*}(w)=$ $T(w)$ for all w.
(f) A \mathbf{C}^{*} algebra is something a lot like $\mathcal{L}(V)$ with its involution $T \mapsto T^{*}$.
(g) Define $\Phi: \mathcal{L}(V) \rightarrow \mathcal{L}(V)$ by $\Phi(T)=T^{*}$. By (a), this map is additive. By (b), it is R-linear: $\Phi(a T)=\bar{a} T^{*}=a T^{*}=a \Phi(T)$. By (c), $\Phi^{2}=\mathrm{Id}_{\mathcal{L}(V)}$ so that Φ is its own inverse and, in particular, is invertible.

[^2]2. Prove in detail DWD Lemma 7.1. Namely, if T is normal on a finite dimensional complex vector space V, then $\operatorname{Null}(T)=\operatorname{Null}\left(T^{*}\right)$.

Solution: Let V be finite dimensional over \mathbf{C} and let $T \in \mathcal{L}(V)$ be normal. Suppose that $T(v)=0$ for some nonzero v. Then $\left\langle T^{*} v, T^{*} v\right\rangle=\left\langle v, T T^{*} v\right\rangle=$ $\left\langle v, T^{*} T v\right\rangle=\left\langle v, T^{*}(0)\right\rangle=0$, that is to say $\left\|T^{*} v\right\|=0$, meaning $T^{*} v=0$. This shows that Null $T \subseteq$ Null T^{*}. Since this is valid for any normal T on V, in particular we can apply it to the adjoint operator T^{*}; we see then that $\operatorname{Null} T^{*} \subseteq \operatorname{Null}\left(T^{*}\right)^{*}=\operatorname{Null} T$ by 1.(c).
3. Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ be a 2×2 complex matrix. This determines a linear map $L_{A}: \mathbf{C}^{2} \rightarrow \mathbf{C}^{2}$ by $v \mapsto A v$. Using only the identity

$$
\left\langle L_{A} v, w\right\rangle=\left\langle v, L_{A}^{*} w\right\rangle
$$

show that $L_{A}^{*}=L_{\bar{A}^{t}}$, where $\bar{A}^{t}=\left(\begin{array}{cc}\bar{a} & \bar{c} \\ \bar{b} & \bar{d}\end{array}\right)$. "The adjoint of a matrix operator is the conjugate transpose." (For the ambitious, try an $n \times n$.)

Solution: Let L_{A} correspond to the $n \times n$ matrix $\left(a_{i j}\right)$. Write $\left(b_{i j}\right)$ for the matrix of the operator L_{A}^{*} in the standard basis. Then $\left(L_{A}^{*}\right)\left(e_{j}\right)=\sum_{k} b_{k j} e_{k}$, so

$$
\begin{aligned}
\left\langle L_{A}^{*}\left(e_{j}\right), e_{i}\right\rangle & =\left\langle\sum_{k} b_{k j} e_{k}, e_{i}\right\rangle \\
& =\sum_{k} b_{k j}\left\langle e_{k}, e_{i}\right\rangle \\
& =b_{i j}
\end{aligned}
$$

and on the other hand

$$
\begin{aligned}
\left\langle L_{A}^{*}\left(e_{j}\right), e_{i}\right\rangle & =\left\langle e_{j}, L_{A}\left(e_{i}\right)\right\rangle \\
& =\left\langle e_{j}, \sum_{k} a_{k i} e_{k}\right\rangle \\
& =\sum_{k} \overline{a_{k i}}\left\langle e_{j}, e_{k}\right\rangle \\
& =\overline{a_{j i}}
\end{aligned}
$$

so $b_{i j}=\overline{a_{j i}}$ as desired.
4. Fill in the blanks. Let T be a normal operator on a finite dimensional \mathbf{C}-vector space V. Consider the list of distinct eigenvalues of $T: \lambda_{1}, \cdots, \lambda_{m}$. (This list is
nonempty becauase (a) every operator on a finite dimensional complex vector space has an eigenvalue.)

Let $U_{\lambda_{i}}$ be the (b) generalized eigenspace corresponding to λ_{i}. By (c) the Jordan theorem, we have a decomposition $V=U_{\lambda_{1}} \oplus \cdots \oplus U_{\lambda_{m}}$.

Let $e_{i}=\operatorname{dim} U_{\lambda_{i}}$ be the (d) multiplicity of λ_{i}. Then we have bases $\beta_{i}^{\prime}=$ $\left\{u_{i, 1}^{\prime}, \cdots, u_{i, e_{i}}^{\prime}\right\}$ for each $U_{\lambda_{i}}$. We may use the (e) Gram-Schmidt process to obtain orthonormal bases $\beta_{i}=\left\{u_{i, 1}, \cdots, u_{i, e_{i}}\right\}$ of each $U_{\lambda_{i}}$. We know that the concatenated list $\beta=\left(\beta_{1}, \cdots, \beta_{m}\right)=\left\{u_{1,1}, u_{1,2} \cdots, u_{1, e_{1}}, u_{2,1}, \cdots, u_{m, e_{m}}\right\}$ is a basis for V because (f) of a homework exercise on bases and direct sums. Notice that each of these basis vectors are normal (i.e. of norm 1) generalized eigenvectors, and that $u_{i, j} \perp u_{k, l}$ whenever $i=k$.

Now, since T is normal, because (g^{*}) DWD Prop 7.2 we know that β is actually a basis of eigenvectors. Finally, because (h*) DWD Prop 7.4 we know that $u_{i, j} \perp u_{k, l}$ whenever $i \neq k$. Therefore β is an orthonormal eigenbasis.

* These results do not have names, but can be found in DWD.

5. Review/redo carefully the proofs of the results cited in (g) and (h) of the previous exercise.
Solution: The proofs themselves are in DWD, the exercise is to do them yourself. Me writing them again here wont help with that.

[^0]: ${ }^{1}$ WARNING: It is not true IN GENERAL, that if $T\left(v_{i}\right)=\lambda_{i} v_{i}$ we have $T^{*}\left(v_{i}\right)=\overline{\lambda_{i}} v_{i}$, but it IS true for normal and self-adjoint operators!

[^1]: ${ }^{2}$ Note carefully that this is not equal to $\mathcal{P}_{2}(\mathbb{C})$, which is the set of all polynomials in z of degree 2 or less with coefficients in \mathbb{C}. Here z is a complex variable whereas x is a real variable

[^2]: ${ }^{3}$ Proof: $<S\left(v_{i}\right), v_{j}>=<\lambda_{i} v_{i}, v_{j}>=\lambda_{i}<v_{i}, v_{j}>$, but also $<S\left(v_{i}\right), v_{j}>=<v_{i}, S^{*}\left(v_{j}\right)>$ $=<v_{i}, \overline{\lambda_{j}} v_{j}>=\overline{\overline{\lambda_{j}}}<v_{i}, v_{j}>=\lambda_{j}<v_{i}, v_{j}>$. Hence $\lambda_{i}<v_{i}, v_{j}>=\lambda_{j}<v_{i}, v_{j}>$, hence $\left(\lambda_{i}-\lambda_{j}\right)<v_{i}, v_{j}>=0$, and so $<v_{i}, v_{j}>=0$ because $\lambda_{i} \neq \lambda_{j}$. See also the warning on page 1

