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1 Peyam Tabrizian

Problem 1:

Suppose V is a vector space over C and T ∈ L(V ) is normal. Show that if every
eigenvalue of T is real, then T is self-adjoint.

Solution: By the complex spectral theorem, there exists an orthonormal basis
B = (v1, · · · , vn) of V consisting of eigenvectors of T .

Let v be an arbitrary vector in V .

By the above, we know that v = a1v1 + · · · + anvn for scalars a1, · · · , an, where
T (vi) = λivi for real eigenvalues λi (i = 1, · · · , n)

In particular, since T ∗ is normal1

But then:

T ∗(v) = T ∗(a1v1 + · · ·+ anvn)

= a1T
∗(v1) + · · ·+ anT

∗(vn)

= a1λ1v1 + · · ·+ anλnvn

= a1λ1v1 + · · ·+ anλnvn because each λi is real

= a1T (v1) + · · ·+ anT (vn)

= T (a1v1 + · · ·+ anvn)

= T (v)

1WARNING: It is not true IN GENERAL, that if T (vi) = λivi we have T ∗(vi) = λivi, but
it IS true for normal and self-adjoint operators!
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So T ∗(v) = T (v) for all v, so T = T ∗ �

Problem 2:

Suppose A is a symmetric matrix over R. Show that if |λ| = 1 for every eigenvalue λ
of A, then A2 = I.

First of all, A∗ = AT (because A has only real entries) = A (because A is symmetric),
so A∗ = A, so A is self-adjoint.

Hence, by the real spectral theorem (which holds for matrices as well), there exists
an orthonormal basis (v1, · · · , vn) of Rn consisting of eigenvectors of A. In particular,
Avi = λivi for real eigenvalues λi (i = 1, · · · , n)

Now let x, y be arbitrary vectors in Rn.

Then x = a1v1 + · · ·+anvn and y = b1v1 + · · ·+ bnvn for scalars a1, · · · , an, b1, · · · , bn.

Goal: We want to show < A2x, y >=< x, y >

Now consider:

< A2x, y >= < A(Ax), y >

= < Ax,A∗y >

= < Ax,Ay > because A∗ = A

= < A(a1v1 + · · ·+ anvn), A(b1v1 + · · ·+ bnvn) >

= < a1A(v1) + · · ·+ anA(vn), b1A(v1) + · · ·+ bnA(vn) >

= < a1λ1v1 + · · ·+ anλnvn, b1λ1v1 + · · ·+ bnλnvn >

=

< a1λ1v1, b1λ1v1 > + · · · + < a1λ1v1, bnλnvn >
... < aiλivi, bjλjvj >

...
< anλnvn, b1λ1v1 > + · · · + < anλnvn, bnλnvn >

=
n∑

i,j=1

< aiλivi, bjλjvj >

(In the middle step, we used distributivity/foil)



But because bj and λj are real:

< aiλivi, bjλjvj > = aiλibjλj < vi, vj > = aiλibjλj < vi, vj >

Now if i 6= j, < vi, vj >= 0 (by orthogonality), hence < aiλivi, bjλjvj >= 0

And if i = j, < vi, vj >= 1 (by orthonormality), so:

< aiλivi, bjλjvj >= aiλibiλi(1) = aibi(λi)
2 = aibi

(where we used (λi)
2 = (|λi|)2 = 12 = 1, because λi is real)

Therefore, the above sum simplifies to:

< A2x, y >=
n∑
i=1

aibi = a1b1 + · · ·+ anbn

Similarly, we have:

< x, y >= < a1v1 + · · ·+ anvn, b1v1 + · · ·+ bnvn >

=

< a1v1, b1v1 > + · · · + < a1v1, bnvn >
... < aivi, bjvj >

...
< anvn, b1v1 > + · · · + < anvn, bnvn >

=
n∑

i,j=1

< aivi, bjvj >

=
n∑

i,j=1

aibj < vi, vj >

=
n∑
i=1

aibi

=a1b1 + · · ·+ anbn

Therefore:

< A2x, y >= a1b1 + · · ·+ anbn =< x, y >

Hence < A2x, y >=< x, y > for all x, y.

Hence < A2x− x, y >= 0 for all y



Hence A2x− x = 0 for all x, so A2x = x for all x

Hence A2 = I �

Problem 3:

(if time permits) If U = P2(R), what is its complexification UC? Suppose S ∈ L(U)
is defined by S(p) = p′, what is its complexification SC?

UC = U × U = (P2(R))× (P2(R))

Where we identify (p, q) with p+ iq.

Moreover, addition in UC is given by:

(p+ iq) + (r + is) = (p+ r) + i(q + s)

And scalar multiplication in UC is given by:

(a+ ib)(p+ iq) = (ap− bq) + i(aq + bp)

(where a, b ∈ R)

More precisely, a typical element of UC is of the form:

a+ bx+ cx2 + i(d+ ex+ fx2) = (a+ id) + (b+ ie)x+ (c+ if)x2 = c1 + c2x+ c3x
2

where c1 = a+ id, c2 = b+ ie, c3 = c+ if are complex numbers

Conversely, if c1, c2, c3 are arbitrary complex numbers, you can write c1 + c2x+ c3x
2

in the form a+ bx+ cx2 + i(d+ ex+ fx2), where a = Re(c1), b = Re(c2), c = Re(c3),
d = Im(c1), e = Im(c2), f = Im(c3).

It follows that UC is in fact equal to the set of all polynomials in x of degree 2 or
less with coefficients in C2

Finally:

2Note carefully that this is not equal to P2(C), which is the set of all polynomials in z of degree
2 or less with coefficients in C. Here z is a complex variable whereas x is a real variable



SC(p+ iq) =SC(a+ bx+ cx2 + i(d+ ex+ fx2)

=S(a+ bx+ cx2) + iS(d+ ex+ fx2)

=b+ 2cx+ i(e+ 2fx)

=(b+ ie) + 2(c+ if)x

=p′ + iq′

=(p+ iq)′

That is, SC(p) is still equal to p′, except that now we’re considering polynomials with
coefficients in C instead of R. �

Problem 4:

Briefly explain how to prove the real spectral theorem from the complex spectral
theorem

Step 1: Complexify U and S to get UC (which is a vector space over C) and SC (as
in problem 3)

One can show that SC is self-adjoint (and hence all its eigevalues are real).

Step 2: Apply the complex spectral theorem (which applies here) to UC and SC to
obtain an orthonormal basis (w1, · · · , wn) = (u1 + iv1, · · · , un + ivn) of UC consisting
of eigenvectors of SC

Step 3: One can show that in fact u1, · · · , un, v1, · · · , vn are eigenvectors of S, and in
fact:

Span(u1, · · · , un, v1, · · · , vn) = U

In particular, this implies that the span of all the eigenvectors of S is U (?)

Now for each eigenvalue λ, find a basis for Nul(S − λI) and apply Gram-Schmidt to
get an orthonormal basis for Nul(S − λI). Put all your basis vectors together to get
a set B

1) B is linearly independent because eigenvectors of S corresponding to distinct
eigenvalues are linearly independent, and by construction



2) B spans U by (?)

3) B is orthonormal because S is normal, and hence eigenvectors corresponding to
distinct eigenvalues of S are orthonormal3

Hence B is an orthonormal basis of U consisting of eigenvectors of S �

2 Daniel Sparks

1. Prove some of the properties of adjoints listed on p.119; S, T are operators on
a finite dimensional complex vector space V .

(a) (S + T )∗ = S∗ + T ∗

(b) (aT )∗ = aT ∗

(c) (T ∗)∗ = T

Axler suggests thinking about T 7→ T ∗ as a function ∗ : L(V )→ L(V ).

(f) Look up the definition of a C∗-algebra.

(g) Show that ∗ is an isomorphism of R vector spaces.

Solution: (a) 〈(S + T )v, w〉 = 〈Sv, w〉 + 〈Tv, w〉 = 〈v, S∗w〉 + 〈v, T ∗w〉 =
〈v, (S∗ + T ∗)w〉 for all v, w ∈ V . Hence (S + T )∗(w) = (S∗ + T ∗)(w) for all
w ∈ V .

(b) 〈(aT )v, w〉 = 〈a(Tv), w〉 = a〈Tv, w〉 = a〈v, T ∗w〉 = 〈v, aT ∗w〉 = 〈v, (aT ∗)w〉
for all v, w. Hence (aT )∗(w) = (aT ∗)(w) for all w.

(c) 〈T ∗v, w〉 = 〈w, T ∗v〉 = 〈Tw, v〉 = 〈v, Tw〉 for all v, w. Hence (T ∗)∗(w) =
T (w) for all w.

(f) A C∗ algebra is something a lot like L(V ) with its involution T 7→ T ∗.

(g) Define Φ : L(V ) → L(V ) by Φ(T ) = T ∗. By (a), this map is additive. By
(b), it is R-linear: Φ(aT ) = aT ∗ = aT ∗ = aΦ(T ). By (c), Φ2 = IdL(V ) so that
Φ is its own inverse and, in particular, is invertible.

3Proof: < S(vi), vj > = < λivi, vj > = λi < vi, vj >, but also < S(vi), vj > = < vi, S
∗(vj) >

= < vi, λjvj > = λj < vi, vj > = λj < vi, vj >. Hence λi < vi, vj > = λj < vi, vj >, hence
(λi − λj) < vi, vj > = 0, and so < vi, vj > = 0 because λi 6= λj . See also the warning on page 1



2. Prove in detail DWD Lemma 7.1. Namely, if T is normal on a finite dimensional
complex vector space V , then Null(T ) = Null(T ∗).

Solution: Let V be finite dimensional over C and let T ∈ L(V ) be normal.
Suppose that T (v) = 0 for some nonzero v. Then 〈T ∗v, T ∗v〉 = 〈v, TT ∗v〉 =
〈v, T ∗Tv〉 = 〈v, T ∗(0)〉 = 0, that is to say ‖T ∗v‖ = 0, meaning T ∗v = 0.
This shows that NullT ⊆ NullT ∗. Since this is valid for any normal T on
V , in particular we can apply it to the adjoint operator T ∗; we see then that
NullT ∗ ⊆ Null(T ∗)∗ = NullT by 1.(c).

3. Let A =

(
a b
c d

)
be a 2 × 2 complex matrix. This determines a linear map

LA : C2 → C2 by v 7→ Av. Using only the identity

〈LAv, w〉 = 〈v, L∗Aw〉

show that L∗A = L
A

t , where A
t

=

(
a c

b d

)
. “The adjoint of a matrix operator

is the conjugate transpose.” (For the ambitious, try an n× n.)

Solution: Let LA correspond to the n × n matrix (aij). Write (bij) for the
matrix of the operator L∗A in the standard basis. Then (L∗A)(ej) =

∑
k bkjek, so

〈L∗A(ej), ei〉 =

〈∑
k

bkjek, ei

〉
=

∑
k

bkj〈ek, ei〉

= bij

and on the other hand

〈L∗A(ej), ei〉 = 〈ej, LA(ei)〉

=

〈
ej,
∑
k

akiek

〉
=

∑
k

aki〈ej, ek〉

= aji

so bij = aji as desired.

4. Fill in the blanks. Let T be a normal operator on a finite dimensional C-vector
space V . Consider the list of distinct eigenvalues of T : λ1, · · · , λm. (This list is



nonempty becauase (a) every operator on a finite dimensional complex vector
space has an eigenvalue.)

Let Uλi be the (b) generalized eigenspace corresponding to λi. By (c) the Jordan
theorem, we have a decomposition V = Uλ1 ⊕ · · · ⊕ Uλm .

Let ei = dimUλi be the (d) multiplicity of λi. Then we have bases β′i =
{u′i,1, · · · , u′i,ei} for each Uλi . We may use the (e) Gram-Schmidt process to
obtain orthonormal bases βi = {ui,1, · · · , ui,ei} of each Uλi . We know that
the concatenated list β = (β1, · · · , βm) = {u1,1, u1,2 · · · , u1,e1 , u2,1, · · · , um,em}
is a basis for V because (f) of a homework exercise on bases and direct sums.
Notice that each of these basis vectors are normal (i.e. of norm 1) generalized
eigenvectors, and that ui,j ⊥ uk,l whenever i = k.

Now, since T is normal, because (g*) DWD Prop 7.2 we know that β is actually
a basis of eigenvectors. Finally, because (h*) DWD Prop 7.4 we know that
ui,j ⊥ uk,l whenever i 6= k. Therefore β is an orthonormal eigenbasis.

* These results do not have names, but can be found in DWD.

5. Review/redo carefully the proofs of the results cited in (g) and (h) of the pre-
vious exercise.

Solution: The proofs themselves are in DWD, the exercise is to do them your-
self. Me writing them again here wont help with that.


