Amalgamated Worksheet # 4

Various Artists

April 30, 2013

1 Peyam Tabrizian

Problem 1:

Suppose V is a vector space over \mathbb{C} and $T \in \mathcal{L}(V)$ is normal. Show that if every eigenvalue of T is real, then T is self-adjoint.

Solution: By the complex spectral theorem, there exists an orthonormal basis $\mathcal{B} = (v_1, \dots, v_n)$ of V consisting of eigenvectors of T.

Let v be an arbitrary vector in V.

By the above, we know that $v = a_1v_1 + \cdots + a_nv_n$ for scalars a_1, \cdots, a_n , where $T(v_i) = \lambda_i v_i$ for real eigenvalues λ_i $(i = 1, \cdots, n)$

In particular, since T^* is **normal**¹

But then:

$$T^{*}(v) = T^{*}(a_{1}v_{1} + \dots + a_{n}v_{n})$$

$$= a_{1}T^{*}(v_{1}) + \dots + a_{n}T^{*}(v_{n})$$

$$= a_{1}\overline{\lambda_{1}}v_{1} + \dots + a_{n}\overline{\lambda_{n}}v_{n}$$
 because each λ_{i} is real

$$= a_{1}T(v_{1}) + \dots + a_{n}T(v_{n})$$

$$= T(a_{1}v_{1} + \dots + a_{n}v_{n})$$

$$= T(v)$$

¹WARNING: It is not true IN GENERAL, that if $T(v_i) = \lambda_i v_i$ we have $T^*(v_i) = \overline{\lambda_i} v_i$, but it IS true for normal and self-adjoint operators!

So $T^*(v) = T(v)$ for all v, so $T = T^*$

Problem 2:

Suppose A is a symmetric matrix over \mathbb{R} . Show that if $|\lambda| = 1$ for every eigenvalue λ of A, then $A^2 = I$.

First of all, $A^* = A^T$ (because A has only real entries) = A (because A is symmetric), so $A^* = A$, so A is self-adjoint.

Hence, by the *real* spectral theorem (which holds for matrices as well), there exists an orthonormal basis (v_1, \dots, v_n) of \mathbb{R}^n consisting of eigenvectors of A. In particular, $Av_i = \lambda_i v_i$ for real eigenvalues λ_i $(i = 1, \dots, n)$

Now let x, y be arbitrary vectors in \mathbb{R}^n .

Then $x = a_1v_1 + \cdots + a_nv_n$ and $y = b_1v_1 + \cdots + b_nv_n$ for scalars $a_1, \cdots, a_n, b_1, \cdots, b_n$.

<u>Goal</u>: We want to show $\langle A^2 x, y \rangle = \langle x, y \rangle$

Now consider:

(In the middle step, we used distributivity/foil)

But because b_j and λ_j are real:

$$\langle a_i \lambda_i v_i, b_j \lambda_j v_j \rangle = a_i \lambda_i \overline{b_j \lambda_j} \langle v_i, v_j \rangle = a_i \lambda_i b_j \lambda_j \langle v_i, v_j \rangle$$

Now if $i \neq j$, $\langle v_i, v_j \rangle = 0$ (by orthogonality), hence $\langle a_i \lambda_i v_i, b_j \lambda_j v_j \rangle = 0$

And if $i = j, \langle v_i, v_j \rangle = 1$ (by orthonormality), so:

$$\langle a_i \lambda_i v_i, b_j \lambda_j v_j \rangle = a_i \lambda_i b_i \lambda_i (1) = a_i b_i (\lambda_i)^2 = a_i b_i$$

(where we used $(\lambda_i)^2 = (|\lambda_i|)^2 = 1^2 = 1$, because λ_i is real)

Therefore, the above sum simplifies to:

$$< A^{2}x, y > = \sum_{i=1}^{n} a_{i}b_{i} = a_{1}b_{1} + \dots + a_{n}b_{n}$$

Similarly, we have:

$$< x, y >= < a_1v_1 + \dots + a_nv_n, b_1v_1 + \dots + b_nv_n > < a_1v_1, b_1v_1 > + \dots + < a_1v_1, b_nv_n > = : < a_nv_n, b_1v_1 > + \dots + < a_nv_n, b_nv_n > = \sum_{i,j=1}^n < a_iv_i, b_jv_j > = \sum_{i,j=1}^n a_ib_j < v_i, v_j > = \sum_{i=1}^n a_ib_i = a_1b_1 + \dots + a_nb_n$$

Therefore:

$$< A^{2}x, y > = a_{1}b_{1} + \dots + a_{n}b_{n} = < x, y >$$

Hence $\langle A^2 x, y \rangle = \langle x, y \rangle$ for all x, y.

Hence $\langle A^2x - x, y \rangle = 0$ for all y

Hence $A^2x - x = 0$ for all x, so $A^2x = x$ for all x

Hence $A^2 = I$

Problem 3:

(if time permits) If $U = \mathcal{P}_2(\mathbb{R})$, what is its complexification $U_{\mathbb{C}}$? Suppose $S \in \mathcal{L}(U)$ is defined by S(p) = p', what is its complexification $S_{\mathbb{C}}$?

$$U_{\mathbb{C}} = U \times U = (\mathcal{P}_2(\mathbb{R})) \times (\mathcal{P}_2(\mathbb{R}))$$

Where we identify (p,q) with p + iq.

Moreover, addition in $U_{\mathbb{C}}$ is given by:

$$(p+iq) + (r+is) = (p+r) + i(q+s)$$

And scalar multiplication in $U_{\mathbb{C}}$ is given by:

$$(a+ib)(p+iq) = (ap-bq) + i(aq+bp)$$

(where $a, b \in \mathbb{R}$)

More precisely, a typical element of $U_{\mathbb{C}}$ is of the form:

$$a + bx + cx^{2} + i(d + ex + fx^{2}) = (a + id) + (b + ie)x + (c + if)x^{2} = c_{1} + c_{2}x + c_{3}x^{2}$$

where $c_1 = a + id$, $c_2 = b + ie$, $c_3 = c + if$ are **complex** numbers

Conversely, if c_1, c_2, c_3 are arbitrary complex numbers, you can write $c_1 + c_2 x + c_3 x^2$ in the form $a + bx + cx^2 + i(d + ex + fx^2)$, where $a = Re(c_1), b = Re(c_2), c = Re(c_3), d = Im(c_1), e = Im(c_2), f = Im(c_3).$

It follows that $U_{\mathbb{C}}$ is in fact equal to the set of all polynomials in x of degree 2 or less with coefficients in \mathbb{C}^2

Finally:

²Note carefully that this is not equal to $\mathcal{P}_2(\mathbb{C})$, which is the set of all polynomials in [z] of degree 2 or less with coefficients in \mathbb{C} . Here z is a *complex* variable whereas x is a *real* variable

$$S_{\mathbb{C}}(p + iq) = S_{\mathbb{C}}(a + bx + cx^{2} + i(d + ex + fx^{2}))$$

= $S(a + bx + cx^{2}) + iS(d + ex + fx^{2})$
= $b + 2cx + i(e + 2fx)$
= $(b + ie) + 2(c + if)x$
= $p' + iq'$
= $(p + iq)'$

That is, $S_{\mathbb{C}}(p)$ is still equal to p', except that now we're considering polynomials with coefficients in \mathbb{C} instead of \mathbb{R} .

Problem 4:

Briefly explain how to prove the real spectral theorem from the complex spectral theorem

Step 1: Complexify U and S to get $U_{\mathbb{C}}$ (which is a vector space over \mathbb{C}) and $S_{\mathbb{C}}$ (as in problem 3)

One can show that $S_{\mathbb{C}}$ is self-adjoint (and hence all its eigevalues are real).

Step 2: Apply the **complex** spectral theorem (which applies here) to $U_{\mathbb{C}}$ and $S_{\mathbb{C}}$ to obtain an orthonormal basis $(w_1, \dots, w_n) = (u_1 + iv_1, \dots, u_n + iv_n)$ of $U_{\mathbb{C}}$ consisting of eigenvectors of $S_{\mathbb{C}}$

Step 3: One can show that in fact $u_1, \dots, u_n, v_1, \dots, v_n$ are eigenvectors of S, and in fact:

$$Span(u_1, \cdots, u_n, v_1, \cdots, v_n) = U$$

In particular, this implies that the span of all the eigenvectors of S is $U(\star)$

Now for each eigenvalue λ , find a basis for $Nul(S - \lambda I)$ and apply Gram-Schmidt to get an *orthonormal basis* for $Nul(S - \lambda I)$. Put all your basis vectors together to get a set \mathcal{B}

1) \mathcal{B} is linearly independent because eigenvectors of S corresponding to distinct eigenvalues are linearly independent, and by construction

- 2) \mathcal{B} spans U by (\star)
- 3) \mathcal{B} is orthonormal because S is normal, and hence eigenvectors corresponding to distinct eigenvalues of S are orthonormal³

Hence \mathcal{B} is an orthonormal basis of U consisting of eigenvectors of S

2 Daniel Sparks

- 1. Prove some of the properties of adjoints listed on p.119; S, T are operators on a finite dimensional complex vector space V.
 - (a) $(S+T)^* = S^* + T^*$
 - (b) $(aT)^* = \overline{a}T^*$
 - (c) $(T^*)^* = T$

Axler suggests thinking about $T \mapsto T^*$ as a function $* : \mathcal{L}(V) \to \mathcal{L}(V)$.

- (f) Look up the definition of a \mathbf{C}^* -algebra.
- (g) Show that * is an isomorphism of \mathbf{R} vector spaces.

Solution: (a) $\langle (S+T)v, w \rangle = \langle Sv, w \rangle + \langle Tv, w \rangle = \langle v, S^*w \rangle + \langle v, T^*w \rangle = \langle v, (S^*+T^*)w \rangle$ for all $v, w \in V$. Hence $(S+T)^*(w) = (S^*+T^*)(w)$ for all $w \in V$.

(b) $\langle (aT)v, w \rangle = \langle a(Tv), w \rangle = a \langle Tv, w \rangle = a \langle v, T^*w \rangle = \langle v, \overline{a}T^*w \rangle = \langle v, (\overline{a}T^*)w \rangle$ for all v, w. Hence $(aT)^*(w) = (\overline{a}T^*)(w)$ for all w.

(c) $\langle T^*v, w \rangle = \overline{\langle w, T^*v \rangle} = \overline{\langle Tw, v \rangle} = \langle v, Tw \rangle$ for all v, w. Hence $(T^*)^*(w) = T(w)$ for all w.

(f) A C^{*} algebra is something a lot like $\mathcal{L}(V)$ with its involution $T \mapsto T^*$.

(g) Define $\Phi : \mathcal{L}(V) \to \mathcal{L}(V)$ by $\Phi(T) = T^*$. By (a), this map is additive. By (b), it is **R**-linear: $\Phi(aT) = \overline{a}T^* = aT^* = a\Phi(T)$. By (c), $\Phi^2 = \mathrm{Id}_{\mathcal{L}(V)}$ so that Φ is its own inverse and, in particular, is invertible.

 $[\]overline{{}^{3}\text{Proof:} \langle S(v_{i}), v_{j} \rangle} = \langle \lambda_{i}v_{i}, v_{j} \rangle = \lambda_{i} \langle v_{i}, v_{j} \rangle, \text{ but also } \langle S(v_{i}), v_{j} \rangle = \langle v_{i}, S^{*}(v_{j}) \rangle = \langle v_{i}, \overline{\lambda_{j}}v_{j} \rangle = \overline{\lambda_{j}} \langle v_{i}, v_{j} \rangle = \lambda_{j} \langle v_{i}, v_{j} \rangle. \text{ Hence } \lambda_{i} \langle v_{i}, v_{j} \rangle = \lambda_{j} \langle v_{i}, v_{j} \rangle, \text{ hence } (\lambda_{i} - \lambda_{j}) \langle v_{i}, v_{j} \rangle = 0, \text{ and so } \langle v_{i}, v_{j} \rangle = 0 \text{ because } \lambda_{i} \neq \lambda_{j}. \text{ See also the warning on page 1}$

2. Prove in detail DWD Lemma 7.1. Namely, if T is normal on a finite dimensional complex vector space V, then $\text{Null}(T) = \text{Null}(T^*)$.

Solution: Let V be finite dimensional over C and let $T \in \mathcal{L}(V)$ be normal. Suppose that T(v) = 0 for some nonzero v. Then $\langle T^*v, T^*v \rangle = \langle v, TT^*v \rangle = \langle v, T^*v \rangle = \langle v, T^*(0) \rangle = 0$, that is to say $||T^*v|| = 0$, meaning $T^*v = 0$. This shows that Null $T \subseteq$ Null T^* . Since this is valid for any normal T on V, in particular we can apply it to the adjoint operator T^* ; we see then that Null $T^* \subseteq$ Null $T^* \subseteq$ Null T by 1.(c).

3. Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ be a 2 × 2 complex matrix. This determines a linear map $L_A : \mathbf{C}^2 \to \mathbf{C}^2$ by $v \mapsto Av$. Using only the identity

$$\langle L_A v, w \rangle = \langle v, L_A^* w \rangle$$

show that $L_A^* = L_{\overline{A}^t}$, where $\overline{A}^t = \begin{pmatrix} \overline{a} & \overline{c} \\ \overline{b} & \overline{d} \end{pmatrix}$. "The adjoint of a matrix operator is the conjugate transpose." (For the ambitious, try an $n \times n$.)

Solution: Let L_A correspond to the $n \times n$ matrix (a_{ij}) . Write (b_{ij}) for the matrix of the operator L_A^* in the standard basis. Then $(L_A^*)(e_j) = \sum_k b_{kj} e_k$, so

$$\begin{array}{lcl} \langle L_A^*(e_j), e_i \rangle & = & \left\langle \sum_k b_{kj} e_k, e_i \right\rangle \\ & = & \sum_k b_{kj} \langle e_k, e_i \rangle \\ & = & b_{ij} \end{array}$$

and on the other hand

$$\begin{array}{lll} \langle L_A^*(e_j), e_i \rangle & = & \langle e_j, L_A(e_i) \rangle \\ & = & \left\langle e_j, \sum_k a_{ki} e_k \right\rangle \\ & = & \sum_k \overline{a_{ki}} \langle e_j, e_k \rangle \\ & = & \overline{a_{ji}} \end{array}$$

so $b_{ij} = \overline{a_{ji}}$ as desired.

4. Fill in the blanks. Let T be a normal operator on a finite dimensional C-vector space V. Consider the list of distinct eigenvalues of $T: \lambda_1, \dots, \lambda_m$. (This list is

nonempty becauase (a) every operator on a finite dimensional complex vector space has an eigenvalue.)

Let U_{λ_i} be the (b) generalized eigenspace corresponding to λ_i . By (c) the Jordan theorem, we have a decomposition $V = U_{\lambda_1} \oplus \cdots \oplus U_{\lambda_m}$.

Let $e_i = \dim U_{\lambda_i}$ be the (d) <u>multiplicity</u> of λ_i . Then we have bases $\beta'_i = \{u'_{i,1}, \cdots, u'_{i,e_i}\}$ for each U_{λ_i} . We may use the (e) <u>Gram-Schmidt process</u> to obtain orthonormal bases $\beta_i = \{u_{i,1}, \cdots, u_{i,e_i}\}$ of each U_{λ_i} . We know that the concatenated list $\beta = (\beta_1, \cdots, \beta_m) = \{u_{1,1}, u_{1,2}, \cdots, u_{1,e_1}, u_{2,1}, \cdots, u_{m,e_m}\}$ is a basis for V because (f) of a homework exercise on bases and direct sums. Notice that each of these basis vectors are normal (i.e. of norm 1) generalized eigenvectors, and that $u_{i,j} \perp u_{k,l}$ whenever i = k.

Now, since T is normal, because (g^{*}) <u>DWD Prop 7.2</u> we know that β is actually a basis of eigenvectors. Finally, because (h^{*}) <u>DWD Prop 7.4</u> we know that $u_{i,j} \perp u_{k,l}$ whenever $i \neq k$. Therefore β is an orthonormal eigenbasis.

* These results do not have names, but can be found in DWD.

5. Review/redo carefully the proofs of the results cited in (g) and (h) of the previous exercise.

Solution: The proofs themselves are in DWD, the exercise is to do them yourself. Me writing them again here wont help with that.